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Abstract—A canonical problem for swarms of agents is to
collectively choose one of multiple options in their environment.
We present a novel control strategy for solving this problem—
the first to be free of arithmetic computation. The agents do
not communicate with each other nor do they store run-time
information. They have a line-of-sight sensor that extracts one
ternary digit of information from the environment. At every
time step, they directly map this information onto constant-value
motor commands. We evaluate the control strategy with both
simulated and physical e-puck robots. By default, the robots
are expected to choose, and move to, one of two options of
equal value. The simulation studies show that the strategy is
robust against sensory noise, scalable to large swarm sizes, and
generalizes to the problems of choosing between more than two
options or between unequal options. The experiments—50 trials
conducted with a group of 20 e-puck robots—show that the group
achieves consensus in 96% of the trials. Given the extremely
low hardware requirements of the strategy, it opens up new
possibilities for the design of swarms of robots that are small
in size (� 10−3 m) and large in numbers (� 103).

Index Terms—Swarms, Behavior-Based Systems, Distributed
Robot Systems, Multi-Robot Systems, Collective Choice

I. INTRODUCTION

THE ability of groups of decision-making agents to reach
consensus has been studied in a range of disciplines [1],

[2], [3]. In general, a group of agents (e.g., humans, animals,
robots) are operating in an environment that presents multiple
options to choose from. The agents have some means of
accessing information about these options, and of influencing
each other. For example, some ant species use pheromone
trails to select the most efficient path to a food source from
multiple options [4]. In addition, some ant and bee species
perform “house hunting”, in which they collectively select
and move to a new nest site [5]. The objective for the agents
is to reach an agreement on which option to choose. In the
following, we refer to this problem as the collective choice
problem.

In this paper, we study the collective choice problem with
a group of simplistic robotic agents, and are interested in the
situation where:
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• The group of agents is homogeneous, in other words, all
agents are identical;

• There are two or more options to choose from;
• The options are of equal value1, so the group of agents

is no better off choosing one over the other;
• The agents’ environment does not contain any cues that

could help or hinder the selection process.
The agents may therefore only rely on sensing and/or com-
municating with each other for making a decision. A number
of solutions have been proposed for similar collective choice
problems [6], [7], [8], [9], [10], including generalizations, such
as the best-of-n problem [11]. Valentini et al. [12] present a
detailed review of the best-of-n problem in a swarm robotics
context.

Halloy et al. [6] used robots to explore the collective choice
problem in cockroaches. Naturally, cockroaches prefer darker
shelters over lighter ones. The researchers introduced a group
of robots coated with pheromone such that they were accepted
by a group of cockroaches as conspecifics. The robots were
programmed to “[...] explore their environment autonomously
[and] tune their resting time [in the shelters] in relation to the
presence of cockroaches, as cockroaches do” [6]. The robots,
being programmed to prefer the lighter shelter, were able to
socially influence the cockroaches so that they, on average,
also made this ‘unnatural’ choice.

Parker and Zhang [11] studied a scenario in which a group
of robots is expected to choose the best out of a number
of unequal options. The robots employ an active recruitment
strategy that relies on inter-robot communication. The robots
start by looking for options and advocating them to each other,
always switching selection to the best-known option. Once
a robot’s selection becomes sufficiently popular (reaching a
quorum), the robot becomes committed to it. This enables the
group to reach consensus.

Hamann et al. [8] studied how a homogeneous group of
robots can collectively choose between two global maxima in
a light-intensity field. Each robot moves in a straight line until
it encounters another robot. Then, it stops and counts the total
number of robots in its neighborhood. If this is above some
threshold, the robot measures the light intensity and waits for
a time proportional to this intensity. This creates a positive
feedback effect which enables symmetry breaking between the
two options.

Valentini et al. [10] studied a swarm of robots that collec-
tively choose among two unequal options. At any moment in
time, each robot has an opinion about which option is best. The

1This assumption is relaxed in Section IV-G, where options of different
sizes are considered.
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robot either explores the option, or exchanges information with
its neighbors. In the latter case, the robot locally broadcasts
its opinion for a duration that is proportional to the perceived
quality of the preferred option. Moreover, for a fixed time
period it monitors incoming messages and then updates its
opinion using the majority rule. The robot then switches to
exploring the potentially new option, and the process repeats
indefinitely.

In all of the above examples, the agents perform arithmetic
computations to determine where or when to move (e.g., artifi-
cial potential fields [6, see S13], artificial neural networks [9],
timeouts [6], [8], [10] or pseudo-random numbers [7]) or
to update internal representations (e.g., preferences [7], [11],
[10]). Moreover, the agents need to store information during
run time (e.g., quality estimates, behavioral states, or coun-
ters). Their sensors typically provide rich information, such
as a count of the number of nearby agents. These hardware
requirements render it difficult for large quantities of these
robots (e.g., � 103) to be produced. Moreover, they render
it difficult for the platforms to be scaled down in size to the
sub-millimeter level, where the available space for hardware
and energy storage is at a premium [13].

Inspired by recent studies on computation-free swarm-
ing [14], we hypothesize that—possibly at the cost of a speed
of solution trade-off—the aforementioned hardware capabil-
ities are not fundamentally needed for the collective choice
problem. Gauci et al. [14] showed that a swarm of robots
of extreme simplicity were able to aggregate (rendezvous)
in a homogeneous environment. Each robot had a binary
sensor that detected whether another robot was in the direct
line of sight. The robot did not compute, nor did it store
information during run time. In [15], the same authors showed
that the swarm, using ternary line-of-sight sensors, was able
to cluster groups of objects. Brown and Johnson applied the
same computation-free swarming framework to solve several
tasks including multi-robot rendezvous [16]. Brown et al. [17]
used novelty search to explore what other tasks could be
solved using the framework. In [18], the framework was
applied to a swarm of simulated shepherding robots, which
controlled herds of simulated sheep. Robots of severely con-
strained hardware were used as well in [19] and [20], where
the authors developed probabilistic strategies for multi-robot
rendezvous, using simple sensors and without any means of
direct communication.

This paper shows for the first time that a group of robots can
collectively choose one of multiple options in their environ-
ment without arithmetic computation. The robots use only one
ternary digit (trit) of information about their environment, and
do not need to store run-time information. The control strategy
can therefore be considered to be the simplest solution to date
for the collective choice problem.

This paper is organized as follows. Section II defines the
collective choice problem, and the sensing, locomotion, and
control capabilities of the agents. Section III presents the
methodology for obtaining the control strategy. Section IV
presents the results obtained when testing the control strategy
on swarms of simulated robots. Section V describes how the
strategy was ported to a physical robot platform, and presents

the experimental results obtained with swarms of 20 e-pucks.
Section VI concludes the paper.

II. PROBLEM DEFINITION
A. Scenario and Objective

Consider a 2-D, bounded environment with two identical,
circular objects, A and B, referred to as options. The options
are placed equidistant from the center of the environment. The
environment does not contain any other cues. The scenario
thus corresponds to the symmetric option qualities and costs
variant of the best-of-n problem [12]. A group of N mobile
agents is initially placed within a region in the center.

The collective choice problem requires the group to commit
to either of the two options within a fixed time period. An
agent is considered to be committed to option X ∈ {A,B},
if it is within a certain range of X . Throughout this paper,
an agent can commit to at most one option. The group is
considered to be committed to option X , if more than N/2
agents—the majority—are committed to X . Note that even
if the group committed to an option, a minority of agents
could still have committed to the other option, resulting in a
split. Splitting is in general undesirable, however, for simplistic
agents, not always avoidable [21].

B. Sensing, Locomotion, and Control Capabilities
Each agent is equipped with one line-of-sight sensor at its

front, which is able to detect the type of object at which it is
pointing. The sensor has a limited range. At each time step,
k, an agent’s sensor provides one of three possible readings:

s[k] =


2 if an option is detected;
1 if another agent is detected;
0 otherwise.

(1)

The agent moves using a differential-drive wheel configura-
tion [22]. In other words, it can move forwards or backwards
in arcs of arbitrary radius—including straight motion and on-
the-spot rotation. The agent therefore has two degrees of
freedom, namely the rotational velocities of the left and right
wheels, which we denote by v` and vr, respectively. Each
wheel velocity can be normalized to the interval [−1, 1], where
−1 and 1 represent a wheel rotating with maximum speed
backwards or forwards, respectively.

We require that the controller2 shall neither perform any
arithmetic computations, nor store any run-time information.
From this constraint, it follows that the controller directly maps
the sensor reading onto two parameters in [−1, 1]—one for
each wheel velocity. This takes place at each time step k.
Formally,

(v`[k], vr[k]) =


(v`,0, vr,0) if s[k] = 0;

(v`,1, vr,1) if s[k] = 1;

(v`,2, vr,2) if s[k] = 2.

(2)

where v`,i ∈ [−1, 1] represents the left wheel velocity corre-
sponding to sensor reading i ∈ {0, 1, 2}, and similarly for vr,i.
Note that the controller is fully specified by the six parameters.

2In the following, we refer to the control strategy simply as the controller.
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III. CONTROLLER SYNTHESIS
The problem now reduces to finding the six controller

parameters that produce the desired behavior, which is an
optimization problem over the real subspace [−1, 1]6 ⊂ R6.
We approach this problem via the black-box paradigm, where
each possible solution can be assigned a score via some
evaluation method. An optimization algorithm is employed
to find good solutions by iteratively generating candidate
solutions and using their quality as feedback. Our evaluation
method for a candidate solution (i.e., a controller) consists of
running a computer simulation with all agents employing that
controller. A suitable metric is used to determine the quality
of the candidate solution based on the global behavior that
it produces on the agents. Note that while this process is
computationally intensive, it is only run once, and it is run
off board of the robots. The obtained controller that goes on
board the robots is free of arithmetic computation.

In the following, we describe the simulation platform,
evaluation of candidate solutions, optimization algorithm, and
obtained solution.

A. Simulation Platform
Each agent is a simulated e-puck robot [23], which is a

miniature mobile robot with a differential-drive wheel config-
uration. The e-puck has a circular body with a radius of 3.7 cm
and a mass of 150 g. The inter-wheel distance is 5.1 cm, and
the maximum wheel velocity is 6.24 rad/s, corresponding to a
maximum linear velocity of the robot of 12.8 cm/s. The line-
of-sight sensor is implemented by casting a ray and checking
whether it intersects with any other object. The ray has a length
of 200 cm, limiting the range of the sensor.

The simulator is implemented using the built-in e-puck
model of the Enki physics library [24]. Enki simulates the
dynamics and interactions of rigid bodies in 2-D. The simula-
tion physics and the control cycle are updated at rates of 100
times per second and 10 times per second, respectively.

B. Evaluation of Candidate Solutions
The evaluation uses a bounded square environment with

sides 300 cm, containing a group of N = 20 robots.3 The
simulation is run for T = 5000 time steps (500 s). We define
a quality measure Q[k], which characterizes the distribution
of robots at time step k during the trial4:

Q[k] =
1

P
min

{
N∑
i=1

||xi[k]− xA||2,
N∑
i=1

||xi[k]− xB ||2
}
,

(3)
where P = (2R)2N is a scaling factor, R is the radius of
the robot’s body, xi[k] is the position of robot i at time step
k, and xA and xB are the positions of options A and B,
respectively. Q[k] is minimized if the robots collectively opt
for either option. The fitness function, to be minimized by the
optimizer, is:

F =

T∑
k=1

kQ[k]. (4)

3Details about their initial placement are described in Section IV-A.
4We opted for a continuous function to aid the optimization process.

TABLE I
THE PARAMETERS OF THE BEST CONTROLLER [SEE EQUATION (2)] AND

THE RESULTING MOTION PRIMITIVE.

nothing robot (agent) option
v`,0 v`,1 v`,2

0.989377 0.999426 -0.106746
vr,0 vr,1 vr,2

-0.348408 0.992379 0.965466
turn right move forward (slight right turn) turn left

By taking the time step into account, the fitness function
rewards solutions for reaching consensus—the earlier, the
better.

C. Optimization Algorithm
As an optimizer, we use the Covariance Matrix Adaptation

Evolution Strategy (CMA-ES) [25]. CMA-ES is a derivation-
free, stochastic, black-box optimization method. We use a
population of λ = 20 candidate solutions, of which µ = 10 are
selected for reproduction. The algorithm is executed for 100
generations. Each candidate solution is evaluated 20 times per
generation and the average fitness is used.

D. Obtained Controller Solution
We performed 40 evolutionary runs using the aforemen-

tioned settings. For each run, we examined the controller
of the final generation that exhibited on average the best
performance according to Equation (4). We observed that six
of these 40 controllers achieved a good performance level. We
then conducted preliminary experimental trials using these six
controllers, and opted for a controller that retained a good
performance level in the physical setup.5 We refer to this
controller as the best controller (see Table I).

IV. SIMULATION STUDIES
In this section, the best controller is evaluated using simu-

lation experiments.

A. Experimental setup
The experimental setup is shown in Figure 1. It defines

a region in the center for the robots to start from. At the
beginning of a trial, N = 20 robots are placed at random
positions and with random orientations within this region. The
setup also defines two commitment regions, one for option A,
the other for option B. If a robot resides within a commitment
region, it is considered committed to the corresponding option.
In the following, we evaluate the robots’ commitments after
300 s (i.e., T = 3000 time steps).6

B. Analysis of the Behaviors
We conducted 1000 trials using the setup described in

Section IV-A.
5 Note that overdesign—also known as overfitting—is a common issue in

evolutionary robotics [26], and may explain why some controllers perform
differently in reality than in simulation.

6During the optimization process, a larger trial duration of 500 s was used
to support the incremental development of promising solutions. Post-analysis
of the best controller however revealed that 300 s is sufficient for the swarm to
reach consensus, and hence this trial duration is used throughout all simulation
and physical experiments.
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Fig. 1. Illustration of the environment used in the simulation experiments.
The grey lines indicate the boundary of the environment. The robots start from
random positions within the central region. The green solid disks represent
options A and B. The circular regions around them indicate the corresponding
commitment regions.

Fig. 2. Number of trials in which NA and NB robots committed, respectively,
to options A and B. In total, 1000 simulation trials with N = 20 robots were
conducted, each for a 300 s duration.

Figure 2 shows the number of trials in which NA ∈
{0, 1, 2, . . . , N} and NB ∈ {0, 1, 2, . . . , N} robots committed,
respectively, to options A and B. In 97.3% of the trials,
the swarm committed to one of the options, either A (i.e.,
NA > N/2) or B (i.e., NB > N/2). In 12.8% of the trials, the
swarm split across both options (i.e., NA > 0 and NB > 0). In
Figure 2, the inner region of the triangle is virtually empty.7

In other words, in almost all cases where the swarm split,
there were no uncommitted robots left in the environment (i.e.,
NA +NB = N ).

We now analyze the best controller (see Table I) in more
detail. Consider a robot at time step k. If the robot detects
nothing (s[k] = 0), it turns to the right [(v`,0, vr,0) =
(0.989377,−0.34840)]. If it detects another robot (s[k] =
1), it moves forward while slightly turning to the right
[(v`,1, vr,1) = (0.999426, 0.992379)]. If it detects an option,

7To make outliers visible, a log scale had to be used for the color bar.

Fig. 3. Sequence of snapshots showing a swarm of 20 simulated robots
choosing option B. They were taken (from the top left to the bottom right)
once 0, 10, 20, 30, 40, and 300 s had elapsed. Initially the swarm aggregates
around the center of the arena. The motion of the robots causes symmetry-
breaking and as a result the swarm collectively approaches the option on the
right. When t = 40 s the robots orbit around option B and remain committed
to their choice.

it turns to the left [(v`,2, vr,2) = (−0.106746, 0.965466)].
Once the robot loses sight of an option, and detects nothing,
it turns to the right, hence likely detecting the option again.
The process of alternatively detecting an option and nothing
causes the robot to approach the (left edge of the) option. If the
option is occluded by other robots, however, these are detected
instead, resulting in the robot moving directly towards them
(and the option). This seems to facilitate reaching a consensus
in the swarm. As more robots join, an orbiting behavior is
observed, where each robot follows the robot in front of it. If
there is no such robot, a robot slides along the perimeter of
the option in a clockwise fashion, while alternately detecting
the option and nothing, and keeps doing so until detecting a
robot.

Figure 3 shows a sequence of snapshots taken from a typical
trial. A video recording of an example trial is available in the
online supplementary material. 8

C. The Effects of Sensor Noise

We investigate how robust the controller is with respect to
sensor noise. False negative noise was introduced in the robot’s
sensor as follows. If the robot had either another robot or an
option in front of it, with probability p it would not detect it;
in other words, it would obtain the incorrect sensor reading
s[k] = 0 (nothing). The probability of misdetection was varied
from 0 to 1 in increments of 0.1.

Figure 4 shows the maximum number of robots having
committed to the same option [i.e., max(NA, NB)]. The green
dashed line represents the performance of the swarm when the
noise is restricted to the detection of options. The swarm copes
well with this type of noise; its performance is affected only
for noise levels of ≥ 50%. The red dotted line represents the
performance of the swarm when the noise is restricted to the
detection of other robots. The performance of the swarm for
noise levels of more than 50% remains at around 9 committed
robots [i.e., max(NA, NB) ≈ N/2]. Once the robots can no

8Online supplementary material, http://naturalrobotics.group.shef.ac.uk/
supp/2018-002

http://naturalrobotics.group.shef.ac.uk/supp/2018-002
http://naturalrobotics.group.shef.ac.uk/supp/2018-002
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Fig. 4. Effects of sensor noise, p, on the swarm performance, max(NA, NB).
For each setting, 100 simulation trials with 20 robots were conducted and
averaged. The duration of trials was 300 s. The error bars represent the ±
standard error.

Fig. 5. Performance of a swarm choosing between n options, that is, the
maximum number of robots committed to a same option (1000 trials).

longer detect each other, as expected, the swarm splits in
two, about equally sized, sub-groups. The black solid line
represents the performance of the swarm when the noise is
affecting both the detection of other robots and the options.
In this case, the performance drops more rapidly than in the
other cases, suggesting that there is a compounding effect from
the different types of noise. This limitation of the controller
may make it unsuitable for applications in unstructured real-
world environments. However, if a noise model is known for
a particular environment, this could be incorporated into the
controller optimization process, and this may yield a better
controller.

D. Choosing Between More Than Two Options

We explore the scenario with n > 2 options. Apart from
the number and positions of options, the environment remains
as shown in Figure 1. One option is placed as option B in
Figure 1, whereas the remaining n − 1 options are equally
spaced along the circle with the same center as the environ-
ment. With this configuration, n = 7 is the maximum such
that the commitment regions do not overlap. We therefore
performed 1000 trials for each n = 1, 2, . . . , 7.

The results are shown in Figure 5. The performance de-
grades gracefully as the number of options increases, even
though the controller was optimized for n = 2 options. For
n = 7 options, the swarm did not commit in the majority of the
trials. We observed that the swarm could orbit around multiple
options. As neighboring options are in close proximity, robot
were more likely to be attracted by them.

E. The Effects of the Robot Starting Positions

We investigate how the initial starting positions affect the
performance of the swarm. We performed 1000 trials for each
investigated scenario.

First, we initialized the robots randomly in a circular region
four times larger than the one used before. The change in
performance was not significant (it dropped from 97.3% to
96.6%). We then initialized the robots randomly anywhere in
the environment. The majority of the swarm committed in
83.4% of the trials, but when we also changed the sensing
range to unlimited (i.e., long enough to detect any point in
the arena), the swarm committed in 94.6% of the trials. These
results show that, as long as the robots have a long enough
sensing range, their initial configuration has only a low impact
on performance.

To explore the capabilities of the robots utilizing a shorter
sensing range in a sparse initial distribution, we reran the con-
troller optimization process for three setups. The sensor range
was limited to 200 cm (as before), 100 cm, and 50 cm, and
in each case, the robots were initialized randomly anywhere
in the environment. For the best controllers, 1000 simulation
trials were performed. The swarm committed in 98.6%, 90.3%
and 48.4% of the trials to an option when the robots were
equipped with a sensor range of 200 cm, 100 cm and 50 cm,
respectively. These results indicate that our computation-free
swarming framework tolerates some limitations in the sensor
range, but is unable to cope with strictly local sensing. This is
in line with [14], which shows for the framework—albeit for
a different task—that there exists no memory-less solution to
maintain connectivity, unless the sensor range is sufficiently
large.

F. The Effects of the Swarm Size

We investigate the scalability of the controller by measuring
the performance for swarms of 10, 20, 30, . . . , 100 robots.
Note that the more robots in the swarm, the harder it would
be for all of them to fit inside the commitment region, as
defined in Figure 1. To alleviate this problem, and thereby
allowing a fair comparison between different group sizes,
we removed the boundary of the environment and redefined
the commitment regions to be the left and right half-planes,
splitting the environment in its center in half. In other words,
each robot is committed at all times to its nearest option. We
do not determine if the swarm (majority of robots) commit to
the same option, but rather examine the percentage of robots
committing to the options. At the beginning of each trial, about
50% of the robots are committed to either of the two options.

Figure 6 presents the results of 100 trials per setting.
The performance scales reasonably well with the numbers of
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Fig. 6. Effects of the swarm size, N , on the swarm performance,
max(NA, NB) (in percentage). For each setting, 100 simulation trials were
conducted. The duration of trials was 300 s. The data is represented using
box plots. Here a robot is considered committed to the option that is nearest.

Fig. 7. Ability of the controller to let a swarm of robots choose between un-
equal alternatives. The bars shows the average percentage of robots committed
to options A and B, respectively (100 simulation trials of 300 s duration). For
details, see text.

robots, despite the options being placed at a constant distance
from each other. The average commitment to a same option is
97.9% for 20 robots and 88.5% for 100 robots. When near an
option, the swarm orbits around it. The more robots, the bigger
the radius of the orbit becomes. As a result the performance
of large swarms drops with respect to the half-plane measure.

G. Choosing Between Unequal Alternatives

In this section, we investigate the ability of the swarm
to choose between two unequal alternatives. This scenario
corresponds to the asymmetric option qualities and symmetric
option costs variant of the best-of-n problem [12]. Option A
was kept identical, as shown in Figure 1. However, option B
was changed in radius from −100% (implying it is effectively
removed) to +100%, by 20% increments. Our hypothesis
was that the larger option, if any, will be preferred. As in
Section IV-F, we removed the environment boundary and
redefined the commitment regions using half-planes. This was
done to prevent the situation that it is harder for the swarm
to squeeze into a relatively small commitment region, as the
physical dimension of the option increases.

Figure 7 shows the percentage of robots committed to
options A and B at the end of 100 trials (per setting). As
expected, in trials with equally sized options, the robots have

Fig. 8. Close view of the robotic platform used in the experiments. The e-
puck is coated in red to be identifiable by other e-pucks. The marker on its
top is used by the tracking system for the post-analysis.

no preference. As option B becomes smaller or larger however,
the robots increasingly succeeds in detecting such differences.
When option B has twice the radius of option A, they almost
exclusively opt for it.

The finding suggests that while the controller was designed
and optimized for a particular problem—choosing among
equal alternatives—it can also be used to choose the largest of
unequal alternatives. The controller would be unable to consis-
tently choose the smallest of equidistant, unequal alternatives.
Moreover, it might favor smaller but closer options over larger
but more distant ones.

V. EXPERIMENTS
In this section, the best controller is evaluated using exper-

iments with physical robots.

A. Porting of the Controller

To validate the controller on a physical platform, we use the
e-puck robot [23], shown in Figure 8. The line-of-sight sensor
was emulated using the on-board camera, which is a 640×480
active-pixel sensor. To determine the sensor value, a centered
a× b pixel region is used. We chose a = 2 columns to ensure
that the emulated sensor points exactly towards the front,
and b = 15 rows to improve the sensing range—misaligned
cameras (pitch axis) would otherwise cause false negatives.
The sensor detects the color of the object it is pointed at.
The sensor reading s[k] is 0 if no object (i.e., effectively
the white boundary) is detected, s[k] = 1 if a red object
(robot) is detected, and s[k] = 2 if a green object (options
A or B) is detected. The aforementioned detection procedure
uses arithmetic computation. The controller, however, remains
computation-free.

B. Experimental Setup

The robots operate in a 300 cm × 300 cm environment,
which is bounded by a white wall of height 50 cm. The options
are represented as green cylinders with a diameter of 24 cm
and a height of 10 cm. They are placed as indicated in Figure 1.

We distributed the robots in a hexagonal grid pattern as
shown in Figure 12(a). Random permutations were used to
determine the order of placing the robots on the 20 grid
locations. The orientation of each robot was uniformly chosen
from [0, π).
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Fig. 9. Number of experimental trials in which NA and NB robots committed
to options A and B, respectively. In total, 50 trials with 20 physical e-pucks
were conducted, each for a 300 s duration.

Fig. 10. Breakdown of the 50 experimental trials according to the maximum
number of robots that committed to the same option, max(NA, NB). Each
trial is shown with a color indicating how many of the 20 physical robots
ceased motion.

The trial was started by broadcasting an infrared signal to
all robots using a remote control. No human intervention took
place; where robots ceased motion during a trial, they were
left in the environment. The trial duration was 300 s.

All trials were recorded by an overhead camera at a rate of
25 fps. The recordings were analyzed using the OpenCV [27]
computer vision library. Distortion effects in the images were
removed and the positions of robots tracked automatically.

C. Results

A set of 50 experimental trials were conducted using N =
20 e-puck robots. Video recordings of all trials are available
in the supplementary materials.

Figure 9 shows the number of robots committed to either
option A or B (NA and NB , respectively). In 96% of the
trials, the swarm committed to one of the options, A or B;
in other words, the majority of the robots ended up choosing
that option. In 25 trials, the swarm committed to A, whereas
in 23 trials, it committed to B.

Over the course of the experiments, the robots were set
to operate for 300 s, a total of 1000 times (50 trials with 20
robots). In 2.7% of these cases, the robot ceased motion at
some point during the trial. This may happen for a variety

Fig. 11. Dynamics of max(NA, NB), averaged over the 50 experimental
trials with 20 physical robots.

Fig. 12. A sequence of snapshots from a typical experimental trial with 20
physical robots. They were taken (from the top left to the bottom right) once
0, 20, 40, 80, 120, and 300 s had elapsed. Due to distortion removal, blank
pixels occur at the top and bottom of the images.

of reasons, including a lost contact with the battery or a low
battery state. Figure 10 shows the number of trials for each
combination of max(NA, NB). The color of each trial indi-
cates how many robots ceased motion; the latter was manually
determined, through visual inspection of the overhead video
recordings. The more robots with ceased motion, the more the
performance was affected.

Figure 11 shows the maximum number of robots committed
to the same option over time, max(NA, NB). The blue line
indicates the mean and the green envelope the ± standard error
across the 50 trials.

Figure 12 shows the behaviour of the robots during a typical
trial. In this trial, it takes approximately 35 s for the first robot
to approach the option. The rest of the robots tend to follow,
and the whole swarm is committed to the option after 150 s.
The swarm then remains in the commitment area until the end
of the trial.

VI. CONCLUSIONS

In this paper, we showed that a group of embodied agents
can collectively choose, without arithmetic computation, be-
tween multiple alternatives in an environment. The agents
we considered used a single line-of-sight sensor, obtaining
a ternary digit of information about the environment. The
agents could not communicate, nor store any information
during run time. They directly mapped the sensor reading onto
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constant-value motor commands. Compared to previous solu-
tions to the collective choice problem, the proposed control
strategy requires significantly lower information processing
capabilities—at the expense of a longer sensing range—and
could be implemented on platforms that lack an arithmetic
logic unit.

Using computer simulations, we demonstrated that the con-
trol strategy was fairly robust with respect to sensory noise
as well as changes in the number of robots or options. We
also showed that the strategy works well for a range of
different initial configurations, provided that the sensor’s range
is sufficiently long. We examined the problems of choosing
between equal alternatives and between unequal alternatives.
In the latter case, an option’s quality was reflected by its size
(the bigger, the better). To choose between options of the
same size but unequal qualities, the robots would need to be
equipped with sensors to detect such differences. Assuming
that only a limited number of quality levels are possible, our
framework could be adapted accordingly.

We ported the control strategy onto the e-puck platform,
and performed 50 experimental trials with 20 physical robots.
The swarm succeeded in choosing an option in 96% of the
trials, despite some robots ceasing motion during the trials.

The extreme simplicity of our control strategy makes it
potentially applicable to robotic systems operating at the
submillimeter-scale. For example, nanorobots could be con-
figured to collectively target one of multiple regions of in-
terest at a time. The controller used in our proof-of-concept
implementation was free of arithmetic computations, but the
sensor was not. In future work, we wish to address this
by studying physical swarm robotics platforms with reduced
hardware complexity [13], [28], [29], which could benefit from
our low-capability control strategy.
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