
Spatial Coverage Without Computation

Anıl Özdemir1, Melvin Gauci2, Andreas Kolling3, Matthew D. Hall1, and Roderich Groß1

Abstract— We study the problem of controlling a swarm of
anonymous, mobile robots to cooperatively cover an unknown
two-dimensional space. The novelty of our proposed solution
is that it is applicable to extremely simple robots that lack
run-time computation or storage. The solution requires only a
single bit of information per robot—whether or not another
robot is present in its line of sight. Computer simulations show
that our deterministic controller, which was obtained through
off-line optimization, achieves around 71–76% coverage in a
test scenario with no robot redundancy, which corresponds
to a 26–39% reduction of the area that is not covered, when
compared to an optimized random walk. A moderately lower
level of performance was observed in 20 experimental trials
with 25 physical e-puck robots. Moreover, we demonstrate that
the same controller can be used in environments of different
dimensions and even to navigate a maze. The controller provides
a baseline against which one can quantify the performance
improvements that more advanced and expensive techniques
may offer. Moreover, due to its simplicity, it could potentially
be implemented on swarms of sub-millimeter-sized robots. This
would pave the way for new applications in micro-medicine.

I. INTRODUCTION

We consider the multi-robot spatial coverage problem
for which a group of robots is required to cooperatively
cover an environment or specific regions of interest within.
The problem is relevant for a number of applications. For
instance, robots may be required to monitor a given area,
perhaps to log data, or to detect abnormal events and relay
an alarm to a central station. The robots may also be required
to service the environment, such as watering or applying
chemicals to a field of crops. Finally, complete coverage
constitutes a systematic strategy for search. In this work, we
assume that the environment is bounded, and that all parts
are to be covered continuously. This differs from the problem
of visiting every location once [1], or repeatedly [2], [3].

Howard et al. [4] showed that a swarm of robots, by
emulating the movements of charged particles in a potential
field, could disperse within an office-like environment. Each
robot used relative position information about nearby robots
and obstacles. While the attained formations may not be
uniform, they are guaranteed to be stable. McLurkin and
Smith [5] studied a strategy to deploy a swarm of robots
in a bounded environment, where each robot moved away

1Anıl Özdemir, Matthew D. Hall, and Roderich Groß are with
the Department of Automatic Control and Systems Engineering, The
University of Sheffield, Sheffield, UK {a.ozdemir, m.d.hall,
r.gross}@sheffield.ac.uk

2Melvin Gauci is with the Wyss Institute for Biologically
Inspired Engineering, Harvard University, Boston, MA, USA
mgauci@g.harvard.edu

3Andreas Kolling is with iRobot, Pasadena, CA, USA
akolling@irobot.com

from its k nearest neighbors. For k = 2, the robots obtained
an almost uniform distribution, whereas for k � 2, they
ended up at the boundary. They could also disperse in open
space while maintaining connectivity. The robots used an
infra-red communication system to obtain relative positions.
Schwager et al. [6] studied a swarm of robots that, when put
in a bounded environment, assume positions that optimize an
a priori unknown utility function. This could allow regions of
importance to be monitored more densely. The robots used
local sensing to sample and approximate the utility function.
Their controller achieves near-optimal coverage, and was
tested on the same platform as in [5]. Ramaithitima et al. [7]
proposed a solution to the coverage problem that relies on
only touch and bearing sensors. As the environment is not
known in advance, the robots get sequentially deployed, until
complete coverage is guaranteed.

Gauci et al. [8] proposed a computation-free swarming
concept, which is applicable to robots that lack arithmetic
logic units, run-time memory, and communication capabili-
ties. In the simplest form, each robot has a single binary line-
of-sight sensor that tells whether another robot is detected or
not. The concept was first applied to the problem of multi-
robot rendezvous [8], [9], and was further investigated by
Brown et al. [10], who used novelty search to discover what
other behaviors it could produce. One of these behaviors
turned out to be dispersion; however, it was not further ana-
lyzed. The computation-free swarming concept has also been
used with ternary line-of-sight sensors, allowing the robots to
detect both robots and objects (though not simultaneously).
This enabled swarms of physical robots to collectively
cluster a group of objects [11] and to choose collectively
between one of multiple options [12]. Recently, Wareham
and Vardy [13] formally examined the computational-free
swarming concept for grid-based environments, showing that
the design problem, given an arbitrary task, cannot be solved
in polynomial time, but that efficient solutions exist for a
restricted class of problems.

In this paper we present the first solution to the spatial
coverage problem that is applicable to anonymous robots that
lack the ability to compute, store run-time information, or
communicate. Despite their simplicity, the robots are shown
to cover around 71–76% of an unknown two-dimensional
space in situations without robot redundancy. They outper-
form random walks—reducing the area that is not covered
by 26–39%. Although alternative approaches that require
computation, localization, and more elaborate coordination
may perform better, our minimalist approach serves a number
of important functions. For one, it establishes a baseline
on what should be expected from any system and therefore



allows a quantification of the performance improvements that
any advanced and expensive techniques add to the baseline.
Secondly, the approach could be used on extremely simple
robot-like systems, such as micro- and nano-scale mobile
machines that lack fully-fledged CPUs or wireless radios.

II. PROBLEM DEFINITION

A. Environment and Robots

Consider a two-dimensional, bounded environment, E ⊂
R2, with n autonomous mobile robots. The robots are
indistinguishable from each other and execute an identical
controller. They lack the capability of performing arithmetic
computation, and have no run-time memory. Moreover, they
are unable to communicate with each other, cannot localize,
and have no knowledge of E nor of n.

At time t, robot i’s position and orientation is written
as xi(t) ∈ E and θi(t) ∈ [0, 2π), respectively. Robots are
modeled as open disks of radius r which are fully contained
in E .

Each robot moves using a differential drive. Its linear
velocity in its local reference frame is v`(t)+vr(t)

2 vmax, and
its angular velocity is vr(t)−v`(t)

dwheel
vmax, where v`(t), vr(t) ∈

[−1, 1] are the normalized wheel velocities along the ground,
vmax is the maximum velocity, and dwheel ≤ 2r is the inter-
wheel distance.

Each robot has an unlimited-range sensor that detects
whether another robot is present in the line of sight directly
ahead of the robot. It reports s(t) = 1 at time t if another
robot is present and s(t) = 0 otherwise.

The robot executes a deterministic controller, c : {0, 1} →
[−1, 1]× [−1, 1]. At time t, c assigns sensor reading s(t) to
a pair of wheel velocities. Formally,

(v`(t), vr(t)) = c(s(t)) =

{
(v`,0, vr,0) if s(t) = 0,

(v`,1, vr,1) otherwise.
(1)

Using (v`,0, vr,0, v`,1, vr,1) ∈ [−1, 1]4, any reactive control
strategy can be expressed.

B. Objective

The coverage literature has used a number of performance
criteria for coverage that either relate to the area a robot
covers, special positions robots should occupy, or special
measures of importance of parts of the space. In our work,
we consider the following two performance criteria. The
first criterion, cell coverage, determines coverage quality
by relating robot positions to a given partitioning of the
environment into cells. The goal is to occupy every cell with
at least one robot. Such a partitioning may be provided by
a user, derived from a utility function that represents the
importance of the space, or simply be uniform (as in our
scenarios). The second criterion, area coverage, measures
the joint area that is close to some robot.

The cell coverage at time t is defined by

Pcell(t) =
moccupied(t)

m
, (2)

(a) (b)
Fig. 1. A group of 25 robots performing coverage with two performance
measures illustrated at the beginning (top) and end (bottom) of a trial:
(a) Cell coverage uses a decomposition of the environment (square cells),
and reports the fraction of cells with at least 1 robot; (b) area coverage
assumes that each robot covers all points within a certain range, and reports
the fraction of the environment’s area that the robots collectively cover.
The corresponding coverage (percentage) for (a) is 4.0% (top) and 84.0%
(bottom). For (b) it is 11.6% (top) and 69.8% (bottom).

where moccupied(t) is the number of cells that contain at
least one robot at time t. It follows that 1/m ≤ Pcell ≤
min(n/m, 1).

The area coverage at time t is defined by

Parea(t) =
A
(⋃n

i=1Ni
)

A(E)
, (3)

where Ni = {p ∈ E| : ‖p − xi(t)‖ ≤ rcover}, rcover >
r denotes the distance up to which the robot covers the
environment, and A(S) is the area of S. It follows that
πr2cover
A(E) < Parea ≤ min(

nπr2cover
A(E) , 1).

Note that the cell partitions and coverage radius have no
bearing on the robot’s behavior. They are merely used to
measure performance. Figure 1 illustrates both performance
measures in a square environment with n = 25 robots. The
environment is partitioned into 25 equally-sized square cells.

III. CONTROLLER DESIGN

We use an evolutionary robotics approach [14], [15], [8]
for designing the deterministic controller.

A. Evaluation of Candidate Solutions

Candidate solutions are controllers that are considered by
the optimization process. They are represented in continuous
space, by tuples v = (v`,0, vr,0, v`,1, vr,1) ∈ [−1, 1]4.

To assess the performance of a candidate solution, sim-
ulations are conducted with Enki [16], a 2-D rigid bodies
physics engine. The robot platform is the e-puck [17]. It is
modelled as a disk of radius r = 3.7 cm and mass 152 g. Its
maximum velocity is vmax = 12.8 cm/s. The inter-wheel
distance is dwheel = 5.1 cm. Throughout all simulation runs,
5% uniform noise is affecting the velocity of each wheel.



Fig. 2. Fitness dynamics of 50 evolutionary runs.

For each candidate solution, 20 simulation trials are per-
formed using E = [0, 300]×[0, 300] (cm) and n = 25 robots.
Each trial lasts for T = 120 s, corresponding to 1200 updates
of the robot’s control cycle.

The environment is decomposed into a 5 × 5 grid of
cells, as shown in Figure 1(a). At the beginning of the trial,
all robots are placed with uniformly random position and
orientation at a distance of up to 30 cm from the center of
a uniformly randomly chosen cell.1 All candidate solutions
in a generation are evaluated on the same set of initial
configurations.

The performance of the swarm in a trial is measured using
the cell coverage measure2. Formally,

F =
2

T (T + 1)

T∑
t=1

tPcell(k). (4)

The performance at time t < T is taken into account,
weighted by t, to reward solutions that reach good coverage
faster. The constant factor normalizes F to [0, 1].3 The over-
all fitness of the candidate solution is the mean performance
across 20 trials.

B. Evolutionary Algorithm

Candidate solutions are synthesized using the Covariance
Matrix Adaptation-Evolution Strategy, a black-box optimiza-
tion method that is quasi parameter-free [18]. We use a pop-
ulation of λ = 12 candidate solutions. Initially the candidate
solutions are generated randomly using uniform distributions.
In every generation, each candidate solution is evaluated
via simulation as described above. The evolutionary run
terminates after 500 generations.

C. Controller Selection

In total, 50 evolutionary runs were conducted. The fitness
dynamics are shown in Figure 2. In 4 runs, the evolution
prematurely converged towards solutions of lower quality
than in the other 46 runs.

To choose the best controller out of the 50 evolutionary
runs, we post-evaluated the candidate solutions from the
last generation of each run using 200 additional simulations,
and chose the one with the highest mean performance. The
following section examines the performance of the best
controller across a range of scenarios.

1Initializing the robots in a circular region prevents orientation bias.
2The area coverage measure was not used during the evolutionary process

because it is computationally more demanding.
3In principle, a 0-value is not possible, as at least 1 cell has to be covered.

D. Behavioral Analysis

The parameters of the best controller are: v`,0 = 0.719558,
vr,0 = 0.412543, v`,1 = −0.998071, vr,1 = −0.911843.

As long as the sensor reading does not change, the
robot follows a circular trajectory of radius R, with an
angular velocity ω [19]. We obtain R0 = 9.40 cm and
ω0 = −0.77 rad/s for s = 0, and R1 = 56.48 cm and
ω1 = 0.22 rad/s for s = 1. When the robot detects
another robot in its line of sight, s = 1, it moves rapidly
backward (with 95.5% of the maximum linear speed) along a
circular trajectory, in a counter-clockwise fashion. Otherwise,
it moves forward (with 56.6% of the maximum linear speed),
along a circular trajectory, in a clockwise fashion. If the two
radii, R0 and R1 were the same, the robot would remain
on its orbit indefinitely (assuming no collisions), and hence
would be unable to spatially disperse. We hypothesize that
for any R0 � R1, spatial separation can be achieved.

IV. SIMULATION STUDIES

In this section, we evaluate the performance of the con-
troller (Section III-C) using a series of simulation studies.
Unless otherwise stated, we use the same experimental setup
as during the optimization process (see Section III-A).

We report the coverage performance observed at the end of
the simulation trials using (2) and (3). For area coverage, we
use a coverage radius of rcover = 37.22 cm—a lower bound
for the smallest radius that can obtain complete coverage.4

A. Performance Comparison with Different Strategies

We compare the computation-free controller against three
other controllers:
• Open-loop: The robot moves backward with maximum

speed; (v`,0, vr,0) = (v`,1, vr,1) = (−1,−1).5
• Greedy: The robot moves backward with maximum

speed if another robot is detected, (v`,1, vr,1) =
(−1,−1), and otherwise turns clockwise on the spot
with maximum angular velocity; (v`,0, vr,0) = (1,−1).

• Random walk: We use the random walk framework
studied in [21]. The random walk consists of alternating
straight-line segments of random length and on-the-
spot rotations by random angles. The nature of the
random walk is characterized by a 3-tuple, (ρ, α, β).
The first parameter, ρ ∈ (0, 1) controls the correlation
between angles of subsequent segments, while the other
two parameters, α ∈ (0, 2] and β ∈ (0,∞), control,
respectively, the shape and scale of the distribution from
which the lengths of the segments are drawn (for details,
see [21]). To optimize (ρ, α, β), we follow the same
process that was used for optimizing our computation-
free controller. As in Section III-C, 50 evolutionary runs
were conducted, and the best controller of each run was
post-evaluated to select the overall best random walk for
the present environment.

4This is obtained by solving nπr2cover = (2π
√
3/9)A(E) [20].

5Due to symmetry, this strategy is identical to (1, 1).



(a) (b)

(c) (d)

(e) (f)

(g) (h)
Fig. 3. Histogram showing the frequency of cell coverage (left) and
area coverage (right) percentages, as observed in 1000 simulation trials
with n = 25 robots, controlled by (a)–(b) our optimized controller, (c)–(d)
an open-loop controller, and (e)–(f) the greedy controller, all of which are
deterministic and computation-free, as well as (g)–(h) the optimized random
walk controller, which uses computation to count control cycles while
moving forward and turning, and to generate pseudo-random numbers from
tailored distributions for the step length and turning angle. The environment
has dimensions 300 cm× 300 cm.

For each strategy, 1000 trials were performed. Figure 3
shows the results. Regarding cell coverage (left), the mean
performance is 76.0% for the proposed controller, 22.4%
for the deterministic open-loop controller, 60.8% for the
deterministic, greedy controller, and 60.8% for the optimized
random walk controller, respectively. Regarding area cover-
age (right), the mean performance is 71.2% for the proposed
controller, 16.0% for the deterministic open-loop controller,
51.8% for the deterministic, greedy controller, and 61.3%
for the optimized random walk controller, respectively. The
proposed controller achieves a 25.6–38.8% reduction in
the uncovered area when compared to the random walk
controller. In addition, its performance is more consistent:
the variances for cell and area coverage are 4.99% and 6.36%
for the proposed controller and random walk controller,
respectively.

B. Effect of Sensory Noise

We examine the situation that noise is affecting the reading
values of the binary line-of-sight sensor. This noise is in
addition to the noise affecting the wheel velocities.

We consider three types of noise:

• False-negative: For s(t) = 1, with probability p ∈ [0, 1]
the reading value is replaced by a random value, X(t) ∈
{0, 1}, which is uniformly chosen at time t. For s(t) =
0, the original value is retained.

• False-positive: For s(t) = 0, with probability p ∈ [0, 1]
the reading value is replaced by a random value, X(t) ∈
{0, 1}, which is uniformly chosen at time t. For s(t) =
1, the original value is retained.

Fig. 4. Cell coverage (blue) and area coverage (orange) of n = 25
robots with noisy sensors and the computation-free controller. Three types of
noise: (a) false-negative (solid), (b) false-positive (dashed), and (c) combined
(dotted). Mean values and standard deviations based on 100 simulation trials
per level and type of noise. The environment has dimensions 300 cm ×
300 cm.

Fig. 5. Cell coverage (blue) and area coverage (orange) of n =
5, 10, 15, . . . , 100 robots in a 300 cm × 300 cm environment using the
computation-free controller. Mean values and standard deviations based on
100 simulation trials.

• Combined: With probability p ∈ [0, 1] the reading value
is replaced by a random value, X(t) ∈ {0, 1}, which is
uniformly chosen at time t.

We run 100 simulation trials for each p ∈
{0, 0.1, 0.2, . . . , 1}.

Figure 4 shows the results. The controller is very robust to
noise on only one sensor reading (i.e., either false-negative
or false-positive), with both performance measures reporting
over 60% coverage with 100% noise. The performance
degrades faster if noise is present on both sensor readings
(i.e., combined), down to around 20% at 100% noise. Note,
however, that in this case 100% noise represents a purely
random sensor reading.

C. Scalability

The default setup contains no redundancy. If a sin-
gle robot fails, complete coverage can no longer be
achieved. We investigate the performance of swarms of n =
5, 10, 15, . . . , 100 robots in an environment of constant size
(the default environment). Irrespective of the group size, the
robots are initialized in a circular region of radius 60 cm,
which is uniformly randomly placed within the boundaries
of the environment. We run 100 simulation trials per group
size.

Figure 5 shows the results. The average performance
rapidly improves for up to around 40 robots, then plateaus,
and finally improves again for 50 and more robots. The
presence of the plateau, where the performance may even
slightly decrease, is a counter-intuitive result, to be further
investigated in the future.

D. Effect of the Environment Shape

We investigate the spatial distribution of robots in more
detail, and consider the impact of the environment shape.



Fig. 6. Spatial distribution of n = 25 robots in a 300 cm × 300 cm
environment. Each cell indicates the mean number of robots present at the
end of 1000 simulation trials.

Fig. 7. Spatial distribution of n = 25 robots in an elongated, narrow
corridor environment, of dimensions 1500 cm × 60 cm. All robots start
from the cell in the center and execute the computation-free controller for
T = 600 s. Each cell indicates the mean number of robots present at the
end of 1000 simulation trials.

Figure 6 presents a heat map of the mean number of
robots that ended up in the 25 cells at the end of 1000
simulation trials. On average, the robots are more likely to
be present at the environmental boundary, and in particular,
in the four corners. Note that the robots are unable to detect
the boundary. They repel from each other in an attempt to
cover as much area as possible.

To investigate the swarms’ ability to spread through an
elongated, narrow corridor, a further 1000 simulation runs
are performed in a 25 × 1 cell environment, of 1500 cm ×
60 cm dimensions. Figure 7 shows a heat map of the spatial
distribution. The results are consistent with those obtained in
the square environment—the robots are more likely to end
up near the corner than in the center. However, every cell is
covered, on average, by 0.65 robots or more.

Figure 8 shows heat maps for three 600 cm × 300 cm
environments. We assume a 10×5 cell composition. The first
environment is free of obstacles. The second environment
is split into two, by a thin vertical wall in the center. The
wall contains an orifice in the middle. The third environment
contains two vertical walls, creating a z-shaped parkour. As
the environment is twice the size of the original environment,
we used n = 50 and T = 240 s. In general, the swarm
copes well with the restrictions. It can be noted that the
distributions are not fully symmetric in Figure 8b.

E. Navigating a Maze

In the following, we test the ability of the computation-free
controller to make a swarm navigate a simple but unknown
maze. The maze, shown in Figure 9a, contains a number of
challenges, including two dead-ends. The robots enter the
maze on the left-hand chamber, at a rate of one per 10 s,
12 s, 15 s, or 30 s. They execute the same controller as used
in the coverage experiments. Robots are removed as soon
as they are fully contained within the right-hand chamber.
Figure 9b shows the number of robots within the maze over
time. As one can see, the swarm can navigate the maze
with a throughput of 1 robot per 15 s. However, as the input
rate of new robots increases, the maze becomes increasingly
crowded, up to the point that no new robots can be placed.

(a)

(b)

(c)
Fig. 8. Spatial distribution of n = 50 robots in a 600 cm × 300 cm
environment, with (a) no obstacles, (b) a pair of internal walls, creating
an orifice, and (c) a pair of internal walls, creating a z-shaped parkour.
Each cell indicates the mean number of robots present at the end of 1000
simulation trials.

V. EXPERIMENTS

A. Experimental Setup

To validate the feasibility of computation-free coverage in
a real environment, we conducted experiments using n =
25 physical e-puck robots in a bounded 300 cm × 300 cm
environment. The arena was logically split into a 5× 5 grid
of cells of 60 cm× 60 cm dimensions.

The e-puck has a CMOS-RGB camera that faces in the
forward direction, and is used to emulate the line-of-sight
sensor. Each e-puck is wrapped in a red ‘coat’ and operates
in a well lit, white environment to improve the reliability of
detection. The e-puck is also equipped with a red ‘topper’ to
enable easier detection from the overhead camera for post-
analysis. Each e-puck is slightly physically different and, due
to only having two wheels, the camera direction, along the
pitch axis, may slightly change during a robot’s movement.
To account for these misalignments, the line-of-sight sensor
probes not 1 pixel, but rather a vertical column of 7 pixels,
taken symmetrically from the center of the image. The line-
of-sight sensor returns a positive reading (s = 1) if the color
of any of the 7 pixels is not bright6, and a negative reading
(s = 0), otherwise.

For each experimental trial, the e-pucks are initialized in
a different cell, as was done in the computer simulations.
The cells are selected using a uniformly random distribution.

6We test (R,G,B) ≺ (180, 180, 140), where (R,G,B) is the RGB
triplet of the color, and ≺ induces the partial order called product (or
component-wise) order. Whereas a test if a value is smaller than another
requires computation when implemented by digital circuits, an implementa-
tion in the analogue world is trivial (single high-gain differential amplifier).
Note that irrespective of how the line-of-sight sensor is implemented on the
e-puck, the control logic remains free from arithmetic computation.



(a)

(b)
Fig. 9. A swarm of robots using the computation-free controller to navigate
a maze. New robots enter the left chamber of the maze environment at a
constant rate of one per 10 s, 12 s, 15 s, 30 s. Robots are removed as soon
as they are fully within the right chamber. (a) Snapshot taken after 3600 s
with a rate of one per 15 s. (b) Number of robots that are, or have been,
within the maze over time for each of the rates.

(a) (b)

(c) (d)
Fig. 10. Sequence of snapshots taken from a typical experimental trial with
n = 25 physical e-pucks operating in a 300 cm × 300 cm environment.
The snapshots were taken at (a) 0 s, (b) 10 s, (c) 30 s, and (d) 120 s.

Moreover, the robots’ assume random orientations during
initialization. The robots operate for T = 120 s.

B. Results

We performed 20 experimental trials. All trials were
recorded by the overhead camera, and are available in the
online supplementary material [22]. From these video record-
ings, the positions of robots could be tracked. Figure 10
shows an example sequence of snapshots from a typical trial.

Figure 11 summarizes experimental results for all trials.
On average, the swarm achieved a cell coverage and area
coverage of 65.2% and 64.9%, respectively, which outper-
forms the previously obtained benchmarks (recall that the
corresponding values for the random walk controller were

(a) (b)
Fig. 11. Histogram showing the frequency of cell coverage (left) and area
coverage (right) percentages, as observed in 20 experimental trials with n =
25 robots, controlled by our optimized controller, which is deterministic and
computation-free. The environment has dimensions 300 cm× 300 cm.

60.8% and 61.3%, in simulation). The reduction in perfor-
mance may be attributed to the increased friction between the
walls and robots, which could prevent them from continuing
to rotate upon collision. Other factors include sensory noise
and unknown hardware failures. Out of the 20 trials, 3 robots
powered off during a trial, possibly due to low battery, which
was rectified for the following trials.

VI. CONCLUSIONS
This paper presented the simplest solution so far to

the problem of cooperatively covering an unknown two-
dimensional space with a swarm of anonymous mobile
robots. The proposed controller is applicable to robots that
lack run-time computation or storage. The solution requires
only a single bit of information per robot—whether or not
another robot is present in its direct line of sight.

A series of computer simulations showed that the con-
troller outperformed a random walk (both solutions being
optimized off-line). On average, in situations with no robot
redundancy, it covered around 71–76% (depending on the
coverage measure being used) of the space, whereas the
random walk covered around 61% of the space. The swarm
performance was found to degrade gracefully in the presence
of noise. In the case of either false-negative or -positive
noise, the swarm showed robust performance up to a noise
level of 100%. Moreover, the performance was not particu-
larly affected by the robot density in the environment. An
analysis of the spatial distribution revealed that on average
more robots ended up near the boundary, and in particularly
any corners, reducing the efficiency in scenarios without
robot redundancy. A further simulation experiment revealed
that a constant-rate inflow of robots can navigate a maze up
to a critical rate.

Experiments with swarms of 25 physical e-puck robots
demonstrated the feasibility of computation-free coverage on
a real physical platform. They revealed a moderate decrease
in performance, when compared to simulation trials.

In the present study, we focused on the coverage per-
formance and bounded regions that were to be uniformly
covered. In the future, one could equip the robots with an
additional sensor to detect specific features of the environ-
ment, such as the presence of polluting chemicals. Future
studies could take the energy consumption of the robots into
account, when designing the strategies. In the medium- to
long-term, strategies of the simplicity as presented here could
inform the design of novel micro-scale or nano-scale robot-
like systems. This would enable novel applications of multi-
robot coverage, which are not possible with present systems.



REFERENCES

[1] H. Choset, “Coverage for robotics – a survey of recent results,” Annals
of Mathematics and Artificial Intelligence, vol. 31, no. 1, pp. 113–126,
2001.

[2] S. Rutishauser, N. Correll, and A. Martinoli, “Collaborative cover-
age using a swarm of networked miniature robots,” Robotics and
Autonomous Systems, vol. 57, no. 5, pp. 517–525, 2009.

[3] D. Portugal and R. Rocha, “A survey on multi-robot patrolling
algorithms,” in Technological Innovation for Sustainability, L. M.
Camarinha-Matos, Ed. Berlin, Germany: Springer, 2011, pp. 139–
146.

[4] A. Howard, M. J. Matarić, and G. S. Sukhatme, “Mobile sensor
network deployment using potential fields: A distributed, scalable
solution to the area coverage problem,” in Proceedings of the 6th
International Symposium on Distributed Autonomous Robotic Systems
(DARS 2002). Berlin, Germany: Springer, 2002, pp. 299–308.

[5] J. McLurkin and J. Smith, “Distributed algorithms for dispersion in
indoor environments using a swarm of autonomous mobile robots,”
in Proceedings of the 7th International Symposium on Distributed
Autonomous Robotic Systems (DARS 2004). Tokyo, Japan: Springer,
2007, pp. 399–408.

[6] M. Schwager, J. McLurkin, and D. Rus, “Distributed coverage control
with sensory feedback for networked robots.” in Robotics: Science and
Systems, 2006, pp. 49–56.

[7] R. Ramaithitima, M. Whitzer, S. Bhattacharya, and V. Kumar, “Sensor
coverage robot swarms using local sensing without metric infor-
mation,” in 2015 IEEE International Conference on Robotics and
Automation (ICRA 2015). IEEE, 2015, pp. 3408–3415.

[8] M. Gauci, J. Chen, W. Li, T. J. Dodd, and R. Groß, “Self-organized ag-
gregation without computation,” The International Journal of Robotics
Research, vol. 33, no. 8, pp. 1145–1161, 2014.

[9] M. Gauci, J. Chen, T. J. Dodd, and R. Groß, “Evolving aggregation
behaviors in multi-robot systems with binary sensors,” in Proceedings
of the 11th International Symposium on Distributed Autonomous
Robotic Systems (DARS 2012), vol. 104. Berlin, Germany: Springer,
2014, pp. 355–367.

[10] D. S. Brown, R. Turner, O. Hennigh, and S. Loscalzo, “Discovery and
exploration of novel swarm behaviors given limited robot capabilities,”
in Proceedings of the 13th International Symposium on Distributed
Autonomous Robotic Systems (DARS 2016). Berlin, Germany:
Springer, 2018, pp. 447–460.

[11] M. Gauci, J. Chen, W. Li, T. J. Dodd, and R. Groß, “Clustering
objects with robots that do not compute,” in Proceedings of the
2014 International Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2014). IFAAMAS, 2014, pp. 421–428.

[12] A. Özdemir, M. Gauci, S. Bonnet, and R. Groß, “Finding consensus
without computation,” IEEE Robotics and Automation Letters, vol. 3,
no. 3, pp. 1346–1353, 2018.

[13] T. Wareham and A. Vardy, “Viable algorithmic options for design-
ing reactive robot swarms,” ACM Transactions on Autonomous and
Adaptive Systems, vol. 13, no. 1, pp. 5:1–5:23, 2018.

[14] S. Nolfi and D. Floreano, Evolutionary Robotics: The Biology, Intel-
ligence, and Technology. Cambridge, MA, USA: MIT Press, 2000.

[15] V. Trianni, Evolutionary Swarm Robotics: Evolving Self-Organising
Behaviours in Groups of Autonomous Robots, 1st ed. Berlin,
Germany: Springer, 2008.

[16] S. Magnenat, M. Waibel, and A. Beyeler, “Enki: An open source fast
2D robot simulator,” https://github.com/enki-community/enki, 2009.

[17] F. Mondada, M. Bonani, X. Raemy, J. Pugh, C. Cianci, A. Klaptocz,
S. Magnenat, J.-C. Zufferey, D. Floreano, and A. Martinoli, “The e-
puck, a robot designed for education in engineering,” in Proceedings of
the 9th Conference on Autonomous Robot Systems and Competitions,
vol. 1, 2009, pp. 59–65.

[18] N. Hansen and A. Ostermeier, “Completely derandomized self-
adaptation in evolution strategies,” Evolutionary Computation, vol. 9,
no. 2, pp. 159–195, 2001.

[19] G. Dudek and M. Jenkin, Computational Principles of Mobile
Robotics. Cambridge, UK: Cambridge University Press, 2010.

[20] R. Kershner, “The number of circles covering a set,” American Journal
of Mathematics, vol. 61, no. 3, pp. 665–671, 1939.

[21] C. Dimidov, G. Oriolo, and V. Trianni, “Random walks in swarm
robotics: An experiment with Kilobots,” in Proceedings of the 10th
International Conference on Swarm Intelligence (ANTS 2016). Cham,
Switzerland: Springer, 2016, pp. 185–196.

[22] A. Özdemir, M. Gauci, A. Kolling, M. D. Hall, and R. Groß, “Online
supplementary material,” http://naturalrobotics.group.shef.ac.uk/supp/
2019-001, 2019.

https://github.com/enki-community/enki
http://naturalrobotics.group.shef.ac.uk/supp/2019-001
http://naturalrobotics.group.shef.ac.uk/supp/2019-001

	INTRODUCTION
	PROBLEM DEFINITION
	Environment and Robots
	Objective

	CONTROLLER DESIGN
	Evaluation of Candidate Solutions
	Evolutionary Algorithm
	Controller Selection
	Behavioral Analysis

	SIMULATION STUDIES
	Performance Comparison with Different Strategies
	Effect of Sensory Noise
	Scalability
	Effect of the Environment Shape
	Navigating a Maze

	EXPERIMENTS
	Experimental Setup
	Results

	CONCLUSIONS
	References

